
A guide to Android
memory forensics

2 | PwC

Contents

1. Introduction 3

2. Preparing your host and the Android device 4

2.1. Android Studio and adb 4

2.2. Setting up an AVD 5

2.3. Rooting 5

3. Memory acquisition 6

3.1. Compiling a Linux kernel 6

3.1.1. Compiling and running the Goldfish kernel (AVD) 7

3.1.2. Compiling the kernel of a physical Android device 10

3.2. Compiling LiME 13

3.3. Obtaining a memory image 13

3.4. Replacing the stock boot image 15

4. Android memory analysis techniques 18

4.1. Volatility 18

4.1.1. Creating a Volatility profile 19

4.1.2. Memory analysis with Volatility 21

4.2. Other analysis techniques 25

4.2.1. Pattern matching 25

4.2.2. File carving 29

5 Conclusion 30

Android has been the best-selling operating system
worldwide on smartphones since 2011 and as of May 2017
there are more than two billion monthly active Android
devices.1 As a consequence, the ability to analyse Android
devices for forensic purposes has become increasingly
important.

An important area in forensic analysis is the analysis of volatile memory. Volatile
memory contains a wealth of information about the operating systems and userland
software. Lots of this data, such as network artefacts and passwords, are not stored on
non-volatile flash memory. Other artefacts, such as text messages, are often encrypted
before they are stored on flash memory but still reside in plain text in memory.
The analysis of volatile memory of Windows and Linux operating systems has become
a common practice by forensic investigators and malware analysts, but this is not the
case for Android devices. The analysis of volatile memory of Android still seems to be a
blind spot for many analysts.

This article discusses a hands-on approach for software-based acquisition and
analysis of volatile memory of Android devices. The term software-based relates to the
method of acquisition, which is performed by executing software on a live Android
device. This article also discusses the analysis of the memory image and
demonstrates a few techniques to extract relevant system and user application data
from memory. Following the same approach should enable you to identify and extract
much more relevant information.

Note that the exact method to acquire and analyse Android memory depends on many
factors including the device’s manufacturer, Android version, kernel version and
configuration, CPU architecture and more. This article therefore does not attempt to
serve as a complete manual for all possible Android devices but applying the same
approach should enable you to analyse memory of most of them (though in some
cases with certain limitations).

 1 https://twitter.com/Google/status/864890655906070529?s=20

1. Introduction

3 | PwC

This section explains how to
prepare your host computer
and the Android device to be
analysed (further referred to
as the “target device”) for
memory acquisition and
analysis. The process that is
explained in this article
requires a Linux or macOS
system as host due to the
need to build Android
source files, which is
currently not supported on
Windows. All examples in
this article are applicable for
a 64-bit Ubuntu 18.04
desktop system.

2.1. Android Studio and adb

Although not strictly necessary, it is
recommended to install Android Studio
on your host. Android Studio offers the
ability to run emulated Android devices,
which can greatly aid the testing of
memory acquisition and analysis
methods. Android Studio also comes
with the Android Debug Bridge (adb).

This is a command-line tool that lets
you communicate with an Android
device that is connected to your host.
The tool offers a Unix shell that you can
use to run commands on the Android
device, which will be used to acquire
the contents from memory, as explained
later in this article. Note that adb can
also be installed via Aptitude, without
the need to install Android Studio.

The instructions to install Android Studio
are straightforward and can be found on
https://developer.android.com/
studio/install. On Linux, the installation
can be started by extracting the
installation ZIP file, which can be
downloaded from the website of
Android, to any location on your host.
Then, Android Studio can be launched
by executing
android-studio/bin/studio.sh.

When executed for the first time, this
will launch a setup wizard. In this
wizard, the standard setup can be
selected, which will install all
components that are required to
perform the memory acquisition and
analysis actions that are explained in
this article.

Note that on 64-bit Ubuntu, additional
32-bit libraries need to be installed:

$ sudo apt install libc6:i386
libncurses5:i386 libstdc++6:i386
lib32z1 libbz2-1.0:i386

To utilize adb tools with an Android Virtual
Device (AVD), the user account of your
host needs to be a member of the
plugdev group and the default set of
udev rules for Android devices should be
installed:

$ usermod -aG plugdev $LOGNAME
$ sudo apt install
android-sdk-platform-tools-common

For more information about this, refer to
https://source.android.com/setup/build/
initializing.

To utilize adb on a physical Android
device, USB debugging needs to be
enabled. This is done in the developer
options in the settings of the Android
device. Note that on Android 4.2 and
higher, the developer options are hidden
by default.

2. Preparing your host and the Android device

4 | PwC

The options can be revealed by tapping
the “Build Number” in the settings
7 times. Note that the first time that a
command is executed via adb, the
Android device will display a prompt to
ask whether your host is allowed to
perform USB debugging.

2.2. Setting up an AVD

Before getting started with Android
memory forensics, it can be useful to
set up an Android Virtual Device (AVD)
on your host for testing purposes. An
AVD is a configuration that defines the
characteristics of an Android device.
This device can be simulated in the
Android Emulator, which is part of
Android Studio. The most important
advantage of testing on an AVD is the
flexibility to change components of the
device such as Android version, kernel
version, CPU architecture etc.

After the installation of Android Studio, a
new AVD can be created in Android
Studio’s AVD Manager. Here, an image
without Google Play should be selected
because these allow root access, which
is not the case for images with Google
APIs. When selecting an ARM image,

it is recommended to choose a 32-bit
image because analysis of 64-bit ARM
is not yet supported by the analysis tool
that is discussed later (Volatility). For
the examples in this article, an
armeabi-v7a image was used. After
selecting the image, the SD card should
be configured in the advanced AVD
settings to have a larger capacity than
the RAM, to ensure that a full memory
image can be stored on the SD card.

At this stage, the AVD can already be
launched in the emulator. However, to
make the AVD ready for testing, it
should be launched with a kernel image
that is compiled from its source code on
your host. This way, an exact copy of
the kernel that is running on the Android
device will be available on your host.
This copy will later in this article be
used to cross compile two modules: one
to acquire the contents of memory and
the other to improve memory analysis
capabilities. Eliminating any differences
between the kernel on your host and
the kernel on the Android device will
enable you to get the best possible
results.

2.3. Rooting

The memory acquisition that is
explained in this article makes use of a
loadable kernel module (LKM) to obtain
the contents of memory. The module
needs to be loaded into the kernel of
the Android device, for which root
privileges are required. Rooting the
Android device is not within the scope
of this article and the procedure differs
for each device. However, there is
plenty of documentation online on how
to root various Android devices. The
memory acquisition and analysis
process that is documented as example
in this article was performed on a Nexus
5 device, which was rooted using Nexus
5 CF-Auto-Root
(https://forum.xda-developers.com/
google-nexus-5/orig-development/
nexus-5-cf-auto-root-t2507211).

5 | PwC

3. Memory acquisition

In the context of forensic
analysis, as much data as
possible should be
safeguarded.

Therefore, the goal is to acquire a
physical memory image of Android
devices. Note that various tools exist
that can dump the address space of
individual processes, such as Fridump
(https://github.com/Nightbringer21/fridu
mp), but these are not discussed in this
article. Instead, this article will discuss
the memory acquisition process with the
Linux Memory Extractor (LiME). This
tool can acquire physical memory from
Linux devices and Linux-based devices
such as Android
(https://github.com/504ensicsLabs/LiME
). It was first presented at Shmoocon in
2012 by Joe Sylve. LiME is a loadable
kernel module (LKM) that performs the
entire memory acquisition within the
kernel, without context switches
between userland and the kernel. This
makes LiME forensically sound and
minimizes discrepancies between the
original contents in memory and the
data in the memory image.

Because LiME is a kernel module,
it needs to be compiled for the kernel
version that is running on the target
device. For devices that run a Linux
operating system, this can be
accomplished by compiling the code
directly on the target device (although
the best practice is to compile on a
duplicate dummy system to avoid
tampering with the investigated
system). However, this approach is not
suitable for Android devices because it
is not feasible to compile code on the
Android device directly. Instead, the
LiME module should be compiled on a
Linux or macOS host with a cross
compiler. Before this can be done, the
kernel of the target device first needs to
be compiled on your host. This process
is explained in the next section.

3.1. Compiling a Linux kernel

The Android operating system’s kernel
is based on the Linux kernel, so the
compilation process is similar to that of
a common Linux desktop or server
kernel. To get started, an Android build
environment needs to be set up on
your host.

This entails the installation of software
that is required to compile Android
source code and kernels. A Linux or
Mac system is required to do this,
Windows is not currently supported.
The process that is demonstrated in this
article is applicable for a 64-bit Ubuntu
18.04 desktop host.

The most up-to-date instructions for
Ubuntu and other operating systems
are available on the website of Android
(https://source.android.com/setup/build/
initializing).

The following command installs the
required packages on a 64-bit Ubuntu
18.04 desktop system:

$ sudo apt install git-core
gnupg flex bison build-essential
curl g++-multilib
lib32ncurses5-dev lib32z1-dev
libgl1-mesa-dev libxml2-utils
xsltproc

6 | PwC

Compiling the kernel of a physical
Android device and an AVD is similar.
However, the use case for the physical
device and AVD in this article is
different, which changes the approach.
The goal for the physical Android device
is to preserve its state as much as
possible. Therefore, an identical kernel
should be created on your host without
tampering with the target device. This
involves identifying and obtaining the
kernel source code, kernel configuration
and cross compiler that was used by
the manufacturer of the device in order
to recreate an identical (or similar)
kernel on your host. For the AVD, the
opposite approach is taken. Instead of
recreating the original kernel of the
AVD, any compatible kernel can be
created and used to replace the original
AVD kernel. Therefore, the approach for
a physical device and an AVD are
discussed separately in the next two
sections.

3.1.1. Compiling and running the
Goldfish kernel (AVD)

The Goldfish kernel was created by
Google to be used with Android Studio’s
emulator. It contains additional
functionality that enables the host of the
emulator to interact with the AVD.
Compiling the Goldfish emulator is a
prerequisite for compiling the LiME
module. The resulting kernel image can
also be used to emulate the AVD that
was created in section 2.2, which
ensures that the LiME module is
optimally compatible with the AVD.
Additionally, compiling the kernel will
yield the System.map file. This is one
of the two files that are required to
create a Volatility profile, which is
needed to analyse the memory image
with Volatility, as discussed later in this
article.

The goldfish kernel can be cloned from
googlesource.com:

$ git clone
https://android.googlesource.com
/kernel/goldfish

After cloning the kernel, one of its
branches needs to be checked out.
Note that the current Android emulator

requires a Linux kernel of version 3.10
or higher. During the creation of this
article, the goldfish 3.18 kernel was
tested and confirmed to be compatible
with the LiME module.

$ cd goldfish
$ git branch -a
$ git checkout
remotes/origin/android-goldfish-
3.18

After cloning the source code and
performing a checkout, a compiler
needs to be chosen to cross compile
the source code with. The Android
Open Source Project (AOSP) includes
several compilers located in the
directory
android-source/prebuilts/gcc/lin
ux-x86-arm. Alternatively, compilers
can be downloaded from
https://android.googlesource.com. If an
ARM image was selected for the AVD,
then an arm-eabi-gcc compiler should
be used to compile the goldfish kernel.
The process described in this article
utilized the arm-eabi-4.8 compiler:

$ git clone --depth=1
https://android.googlesource.com
/platform/prebuilts/gcc/linux-x8
6/arm/arm-eabi-4.8

7 | PwC

Before compiling the source code,
some variables of the Makefile need to
be configured. By default, the ARCH
variable is set to the architecture of
the device on which the make
command is executed, which would
likely be x86_64 when running a 64-bit
Linux system. In this example, the
kernel is compiled for an ARM AVD, so
this variable needs to be overwritten.
This can be done by either passing
ARCH=arm to the make command or by
setting ARCH as an environment
variable:

$ export ARCH=arm

The variable CROSS_COMPILE also
needs to be set. This variable specifies
the common prefix of all executables
used during compilation. These
executables are located in the bin
directory of the ARM compiler.

$ export
CROSS_COMPILE=~/Android/arm-eabi
-4.8/bin/arm-eabi-

Inspection of the Makefile shows that
it defines the full path to the required
executable files. For instance, the full
path to arm-eabi-gcc is defined by
the line CC = $(CROSS_COMPILE)gcc.

To remove any previously generated
files, navigate back to the kernel
repository and execute make clean:

$ cd ~/goldfish
$ make clean

The last step before compiling is to set
up a working config. This is a
configuration file that defines the
features of the compiled kernel. For
instance, a relevant option that is
defined by this config file is whether the
kernel should support the loading of
kernel modules. Loadable module
support is required in order to acquire a
memory image with LiME, because
LiME is a loadable kernel module that
needs to be loaded into the kernel.

The kernel repository likely contains
one or more config files, in this case
located in the directory
goldfish/arch/arm/configs. To
obtain the exact config file that was
used by the manufacturer to compile
the kernel of the target device (the AVD
in this case), the original config file can
be extracted from the device:

$ ~/Android/Sdk/platform-tools/adb
pull /proc/config.gz
$ gunzip config.gz

Note that the original config file is not
present on all Android devices. The
original config file that was used for the
compilation of the kernel by the
manufacturer determined whether a
copy of itself is made available on the
target device via the option “Enable
access to .config through
/proc/config.gz”.

To utilize the config file, copy it to a file
called .config in the kernel repository
and run the make menuconfig
command:

$ cp config ~/goldfish/.config
$ make menuconfig

This will display a menu with the various
kernel features that can be configured.
The options “Enable loadable module
support” and “Module unloading” should
be enabled here, if this is not the case
already. Finally, to compile the kernel,
execute the following command in the
kernel repository:

$ make modules_prepare
$ make

8 | PwC

The compilation will take several
minutes. When successful, the kernel
image (zImage) will be located in the
directory arch/arm/boot. The
compilation also generates the
System.map file. This file is required to
create a Volatility profile, which is
explained later in this article.

The AVD can be launched with the new
kernel image by launching the Android
emulator from the command line with
the option -kernel, followed by the
path to the kernel image. Note that the
directory ~/Android/Sdk gets created
when launching Android Studio for the
first time and running the standard
setup.

$ cd ~/Android/Sdk/emulator
$./emulator -list-avds
$./emulator -avd Nexus_5_API_23
-kernel
~/goldfish/arch/arm/boot/zImage
-show-kernel -verbose

9 | PwC

3.1.2. Compiling the kernel of a physical Android device

The kernel source code of physical Android devices can usually be downloaded
from the developer or manufacturer’s website. Simply searching the
manufacturer’s name of the device followed by “kernel source” online should lead
you to a repository. While the steps detailed in this article will differ for each
device, the approach remains the same.

The memory acquisition that is detailed in this article is applicable for a Nexus 5
device. This is an Android smartphone that was developed by Google and LG
Electronics. The kernel source code of Google devices is hosted on
https://android.googlesource.com/kernel. Some manufacturer websites enable
you to find the kernel repository by looking for the device model number, but this
is currently not the case here. However, the website contains a repository called
“msm” which is described as “Kernel tree for Qualcomm chipsets”. Online
documentation states that the Nexus 5 contains a Qualcomm SoC (Qualcomm
Snapdragon 800), so based on this information, the “msm” repository was
selected.

$ git clone https://android.googlesource.com/kernel/msm
$ cd msm

The git command downloaded the complete msm kernel repository, including all
branches. The LiME module should be compiled against the exact same kernel
version that is running on the Android device. To know which version this is, the
“Kernel version” section in the Android device’s settings can be inspected. This
section states the version and date of the kernel:

One possible approach to find the corresponding branch in the kernel repository,
is to compare the version numbers and dates. An overview of branches and their
corresponding dates can be listed by executing the following command from within
the kernel repository:

$ git branch -avv | while read; do echo -e $(git log -1
--format=%ci $(echo "_$REPLY" | awk '{print $2}' | perl -pe
's/\e\[?.*?[\@-~]//g') 2> /dev/null || git log -1
--format=%ci)" $REPLY"; done | sort -r | cut -d ' ' -f -1,4-

The following screenshot shows a snippet of the command output:

10 | PwC

The next few steps are identical to the steps that were taken while setting up an AVD
in the previous section, namely setting some environment variables and setting up a
working config. For more details about these steps, please refer to section 3.1.1.

$ export ARCH=arm
$ export CROSS_COMPILE=~/Android/arm-eabi-4.8/bin/arm-eabi-

In this case, the config file was not present on the Android device, likely because the
kernel option “Enable access to .config through /proc/config.gz” was not enabled by
the manufacturer. If the config file cannot be obtained from the device, a config file
from the kernel repository can be used instead. The msm kernel repository contained
144 configuration files, located in the arch/arm/configs directory. The codename
of the Nexus 5 (“Hammerhead”) indicated that the corresponding config file is called
hammerhead_defconfig.

In this example, the operating system of the Nexus 5 device is Android 6.0.1
(Marshmallow), its kernel version is 3.4.0 and the kernel compilation date is
19 September 2016, so there is a clear match with the branch called
android-msm-hammerhead-3.4-marshmallow-mr3.

$ git checkout -t
remotes/origin/android-msm-hammerhead-3.4-marshmallow-mr3

The next step is to find the right compiler to compile the kernel source code with.
The compiler to be used depends on the CPU architecture of the target device
and ideally you should use the same compiler that was used by the
manufacturer. The CPU architecture can be identified by executing the getprop
command with the option ro.product.cpu.abi on the target device via adb:

This command showed that the CPU architecture of the Nexus 5 is
armeabi-v7a. Now, the version of the compiler that was used can be obtained
by reading from /proc/version:

From the information in the above screenshots it can be concluded that the
manufacturer used the GNU Compiler Collection (GCC) version 4.8 to compile
the kernel for an armeabi-v7a architecture. With this information, the
corresponding compiler can be found on https://android.googlesource.com.

$ git clone --depth=1
https://android.googlesource.com/platform/prebuilts/gcc/linux-x86
/arm/arm-eabi-4.8

11 | PwC

Finally, to compile the kernel, execute the following commands from within the kernel
repository:

$ make modules_prepare
$ make

The compilation will take several minutes. When successful, the kernel image will be
located at arch/arm/boot/zImage. The directory arm in this example represents the
architecture of the kernel image and will differ based on the architecture. The
compilation also generates the System.map file. This file is required to create a
Volatility profile, which is explained later in this article. Note that in this case a
zImage-dtb image was created, which is a kernel image with a device tree blob
(DTB) appended to it.

To inspect or change the options in the configuration file, copy it to the root
directory of the repository and execute the make_defconfig.sh script with the
configuration file as parameter:

$ cd ~/Android/msm
$ cp arch/arm/configs/hammerhead_defconfig ~/Android/msm/
$./make_defconfig.sh hammerhead_defconfig

This will present a menu with the kernel configuration options. Here, the options
“Enable loadable module support” and “Module unloading” are of interest. For
some default kernels that are shipped with Android devices, these options were
not enabled by the manufacturer. This hinders the memory acquisition process,
because the LiME module cannot be loaded into the stock kernel. A possible
workaround is discussed later in this article. For this workaround, a kernel image
which does enable module loading is required. Therefore, it is recommended to
enable both options now, in order to already obtain a suitable kernel image for
this workaround. Enabling these options is not needed if you know that the
kernel of the target device already supports module loading.

Upon exiting and saving the configuration menu, the changes will be written to
.config.

12 | PwC

3.2. Compiling LiME

The first step to compile LiME is to
clone its source code onto your host.

$ git clone --depth=1
https://github.com/504ensicsLabs
/LiME.git
$ cd LiME/src

Now, the Makefile needs to be edited
to include the path to the compiled
target kernel (KDIR), the path to the
cross compiler which was used to
compile the kernel source code
(CCPATH), the target kernel version
(KVER) and its architecture (ARCH).

$ nano Makefile

The LiME module can now be compiled
by executing the following commands
from the root directory of the LiME
repository.

$ make clean
$ make

This generated a file called
lime-3.4.0.ko, where 3.4.0 will match
the value that was assigned to KVER in
the Makefile.

3.3. Obtaining a memory
image

At this stage, the only thing left to do to
acquire the contents of memory is to
load the LiME module in the kernel of
the target device. The module can be
copied to the target device via adb’s
push command:

$ ~/Android/Sdk/platform-tools/adb
push ~/Android/LiME/src/
lime-goldfish.ko
/sdcard/lime-goldfish.ko

The AVD used as example in this article
failed to copy the file because its file
system was read-only:

adb: error: failed to copy
<source> to <dest>: Read-only
file system.

This can be solved by remounting the
filesystem as read-write, as root. In this
example, root access was granted
automatically upon executing adb
shell, but if this is not the case then
root access can be acquired by running
the su command (granted that the
target device is an AVD without Google
APIs or a physical device that was
rooted).

13 | PwC

$ ~/Android/Sdk/platform-tools/adb
shell
root@generic:/ # su
root@generic:/ # mount -o
rw,remount rootfs /

After copying the LiME module to the
target device, open a shell with root
privileges on the device (if not done
already) and load the LiME module via
the insmod command.

$ ~/Android/Sdk/platform-tools/adb
shell
root@generic:/ # su
root@generic:/ # cd /sdcard/
root@generic:/ # insmod
lime-goldfish.ko
"path=android.lime format=lime"

The output filename is passed via the
path parameter. The format can either
be raw, padded or lime. The raw
format will store data of acquired
sections after each other in the output
file. However, if certain regions cannot
be acquired, this means that the offset
of consecutive regions in the memory
image will no longer match their original
offset in physical memory. This can be
avoided by using the padded format,
which adds zeros to the output file to
replace any regions that cannot be

captured. The lime format also keeps
track of the original offsets of sections,
but by storing this information as
metadata in the memory image. These
offsets are then used by compatible
analysis tools to reconstruct the original
memory layout.

Upon loading the module into the target
kernel with the insmod command, the
module will immediately start writing the
content of memory to a file. The file can
then be copied to your host with adb’s
pull command:

$ ~/Android/Sdk/platform-tools/adb
pull /sdcard/android.lime

Note that the memory acquisition with
LiME can also be done over a network.
This may be preferred when the
unallocated space of the Android
device’s storage should not be
overwritten for forensic purposes.
Instead of acquiring the data via a
physical network, it can be acquired via
adb’s forward command, which sets up
port forwarding. The following example
sets up forwarding of the Android
device’s port 4444 to the host’s
port 4444:

user@linux:~$
~/Android/Sdk/platform-tools/adb
forward tcp:4444 tcp:4444

LiME can then be instructed to send data
to port 4444 by passing the protocol and
port number instead of a filename to the
path parameter:

root@generic:/ # insmod lime.ko
"path=tcp:4444 format=lime"

The data can then be received and saved
to a file on your host with netcat:

$ nc localhost 4444 > memory.lime

By following the procedure described
above, it was possible to acquire a full
memory image of the AVD that was
emulated on the host. Inspection of the
memory image with the strings utility
revealed valid data such as app names,
URLs and more.

At this stage, the memory acquisition
process should be complete for any
device of which the kernel supports
module loading. Some devices do not
support this, and this causes an
additional obstacle for the memory
acquisition process, as was the case for
the Nexus 5 device. The stock kernel of
this device did not enable module loading
and attempting to insert the LiME module
therefore returned the following error:

14 | PwC

This is possible to bypass by replacing
the original kernel image of the target
device with a custom kernel image that
does support module loading. Such a
kernel image was already created in
section 3.1.

A major drawback to replacing the
original kernel image is that the target
device needs to reboot in the process.
This means that the original content of
memory will be lost. Therefore, this
workaround is less suitable to perform a
forensic analysis of a suspect’s Android
device. However, it may still be useful to
inspect memory after a reboot, for
instance to observe persistent malware
on the device.

The next section describes the process
to create and flash a new boot image.
This is only needed if the memory
image could not be acquired at this
point because the stock kernel of the
device does not enable module loading.
The next section can therefore be
skipped if the memory image was
already acquired at this stage.

3.4. Replacing the stock
boot image

To replace the stock kernel on the target
device with a custom compiled kernel
image, a new boot image needs to be
created. A boot image consists of a
kernel image and a ramdisk.

To keep the target device as close to
the original state as possible, it is
recommended to extract and alter the
original boot image from the target
device. The following commands copy
the boot image of a Nexus 5 to its
shared storage (sdcard) and copy it via
adb to the host.

Host

$ ~/Android/Sdk/platform-tools/adb
shell

Nexus 5

shell@hammerhead:/ $ su
root@hammerhead:/ # cp
/dev/block/platform/msm_sdcc.1/b
y-name/boot /sdcard/boot.img

Host

$ ~/Android/Sdk/platform-tools/adb
pull /sdcard/boot.img boot.img

The recommended way to modify the
boot image is by using the
CyanogenMod tools called mkbootimg
and unpackbootimg, which can be
cloned from the android_system_core
repository on Github:

$ git clone --depth=1
https://github.com/CyanogenMod/a
ndroid_system_core.git

The mkbootimg and unpackbootimg
tools can optionally be copied to
/usr/bin to add them to a location that
is in $PATH:

$ sudo cp
android_system_core/mkbootimg/mk
bootimg /usr/bin
$ sudo cp
android_system_core/mkbootimg/un
packbootimg /usr/bin

15 | PwC

To unpack the original boot image, run the unpackbootimg tool with the filename
of the boot image passed with the -i parameter:

This command extracts the components of the boot image and writes values
such as offsets to new files on disk. Note that the values that were written to
boot.img-ramdisk_offset, boot.img-second_offset and
boot.img-tags_offset need to be edited to contain the prefix 0x. Otherwise,
the values won’t be interpreted as hexadecimal values by the mkbootimg tool.

Now, all components can be packed into a new boot image in which the original
kernel image is replaced by the kernel image that was compiled from source in
section 3.1.

The --kernel parameter points to the kernel image that was created in section
3.1 (zImage-dtb). Note that instead of copying all offset values into this
command, the values are inserted in the command by reading the files created
by unpackbootimg. The output filename is passed with the --output parameter
(new-boot.img).

16 | PwC

Booting the Android device from the
new boot image, or permanently
overwriting the original boot image with
the new image, can be done with the
fastboot tool. This tool can be
installed via Aptitude:

$ sudo apt install fastboot

Before utilizing fastboot, the target
device’s bootloader needs to be
accessed. This is done by powering
down the device and then pressing a
certain combination of buttons. The
combination differs based on the
device, but online documentation
specifies the combination for various
devices. To enter the bootloader on the
Nexus 5, the power button and volume
down button had to be pressed and
held at the same time.

After entering the bootloader, the
Android device needs to be connected
via USB cable to the host. Then, the
device can be instructed to boot from
the new boot image:

$ sudo fastboot boot
new-boot.img

Now, the Android device should boot
just like before and there should not be
any noticeable difference, as the only
thing that was changed is the ability to
load kernel modules. Note that the
above fastboot command did not
overwrite the original boot image of the
Android device. Therefore, if anything
on the Android device would
malfunction, it is possible to restore the
device to its original state by simply
rebooting the device.

After booting the Nexus 5 from the new
boot image, it was possible to acquire a
memory image with LiME by performing
the steps that were explained in the
previous section.

17 | PwC

A physical memory image contains application and kernel
data in an unstructured manner. This section explains the
basics of how to make sense of the data in the
memory image.

The memory contains a wealth of data related to the operating system and user
applications. User application data such as text messages, browser history and
pictures can be extracted using string analysis and file carving techniques, as
demonstrated in section 4.2. To extract general system information such as running
processes and network connections, the Volatility framework is recommended.

4.1. Volatility

Volatility is an open source framework that is capable of extracting and analysing
data from Windows, Linux and macOS memory images (https://github.com/
volatilityfoundation/volatility). The analysis of 32-bit ARM Linux-based devices, such as
Android, is also supported. Note that at the time of writing, Volatility does not yet
support the analysis of memory images of 64-bit ARM devices. One of the co-authors
of Volatility, Andrew Case, stated in September 2018 that this functionality is not yet
implemented due to low demand.

Volatility’s functionality mostly consists of plugins. A Volatility plugin is essentially
a Python script that extends Volatility and that is dedicated to extracting specific
information from a memory image, such as information on running processes, network
connections, handles and so on.

Volatility can be installed via Aptitude, but it is recommended to run the Python source
code from Github instead, to have the latest version. Before analysing Android memory
with Volatility, a profile needs to be created. This is explained in the next section.

4. Android memory analysis techniques

18 | PwC

4.1.1. Creating a Volatility profile

A Volatility profile is a file that contains information about a specific kernel, which
is needed by Volatility to find and reconstruct data from a memory image in a
structured format. Volatility includes pre-made Windows profiles, which means
that Windows memory images can be analysed without having to create a profile.
However, Volatility does not include any Linux profiles. The reason for this is that
there are too many different Linux kernel versions to include a profile for each
version. Therefore, it is generally up to the analyst to create a Volatility profile for
analysing Linux or Android memory images.

A Volatility profile for Linux is a ZIP archive that contains two files: System.map
and module.dwarf.

System.map contains a lookup between all symbol names from the Linux kernel
image and their addresses in memory. This System.map file is generated during
the compilation of the kernel. The following screenshot shows the first few lines
(out of more than 80,000) of the System.map of the stock Nexus 5 kernel:

The kernel source code of the target device was already compiled in section 3.1.,
which means that the System.map file should already be present in the root
directory of the kernel repository.

The second file that is part of the Volatility profile is called module.dwarf. This file
contains a collection of VTypes. These are structure definitions used by Volatility to
represent C data structures (used by Linux kernel) in Python (used by Volatility).
Below is a simplified example of how a C data structure is represented as a VType.

The name of the structure (proc) becomes the name of a dictionary key, which
contains the members along with their types and offset from the base of the structure
(in this example an integer, a character array and a pointer to a string).

19 | PwC

The module.dwarf file is obtained by compiling a dummy kernel module that
declares members of all types needed by Volatility for the target kernel, and then
extracting the DWARF symbols from the dummy module with the dwarfdump tool.
The source code of this module is included in the repository of Volatility and is
located at volatility/tools/linux/module.c. Note that compiling the module
will automatically instruct the dwarfdump tool to extract DWARF symbols from the
resulting module, so dwarfdump should be installed first:

$ sudo apt install dwarfdump

The next step is to clone Volatility from Github and to edit the Makefile of the
dummy module (module.c), which is located under volatility/tools/linux.

$ git clone --depth=1
https://github.com/volatilityfoundation/volatility.git
$ cd ~/volatility/tools/linux

The Makefile needs to be edited to include the path to the compiled target
kernel (KDIR), the path to the cross compiler which was used to compile the
kernel source code (CCPATH), the target kernel version (KVER) and its architecture
(ARCH). Note that in the following screenshot the variable CROSS_COMPILE is
defined as CCPATH followed by arm-eabi-. This may need to be changed to
match the common prefix of all executables located in the bin directory of the
cross compiler.

$ nano Makefile

20 | PwC

Now, the dummy module can be compiled by executing make. This will produce
the module called module.ko and, as instructed by the Makefile, the
dwarfdump tool will extract DWARF symbols from this module and write them to
a new file called module.dwarf. The following screenshot shows the start of the
module.dwarf file that was created for the Nexus 5.

The final step to create a Volatility profile for Linux is to add the System.map and
module.dwarf files into a ZIP archive.

$ zip Nexus5.zip module.dwarf System.map

The creation of the Volatility profile is now complete and the usage of this profile
with Volatility is demonstrated in the next section. Note that in some cases, the
profile might not be compatible with the stock kernel that is running on the target
device. If this is the case, Volatility will throw the error “No suitable address space
mapping found” when attempting to run any plugin. This indicates that most likely
there is a discrepancy between the kernel that is running on the target device and
the kernel that was cross compiled on your host. This discrepancy could be
caused by using different compilation options than the manufacturer. The kernel
configuration options which were used during kernel compilation may drastically
change the resulting kernel image. Possible solutions include cross compiling the
kernel source code again with different options (different .config) or flashing the
kernel that was compiled on your host to the target device in order to eliminate
any discrepancies.

4.1.2. Memory analysis with Volatility

In general, Volatility requires three command line parameters: the filename of the
memory image (--filename or -f), the name of the profile to be used (--profile),
and the plugin to be executed (specified without any prefixing parameter). When
analysing non-Windows memory images, the directory that contains the Volatility
profile (the ZIP file created in the previous section) also needs to be passed to
Volatility via the --plugins parameter. This directory may also contain third-party
Volatility plugins (Python files), which expand the functionality of Volatility. Note that
the --plugins parameter must be the first parameter that is passed to Volatility,
otherwise it will not be processed.

Before the full Volatility command can be constructed, the name of the profile that
was created in the previous section needs to be identified. This can be done by
running Volatility with parameter --info.

$ python2 vol.py --plugins=~/Android/profiles --info

21 | PwC

Upon running this command, Volatility will parse the content of the profiles
directory and include a list of valid profiles in its output. Any custom profiles
should be listed in the output above the built-in Windows profiles. The name of
the custom profile is based on the filename of the ZIP archive. In this example,
the ZIP archive was called Nexus5.zip, which caused the text “Nexus5” to be
present in the profile name. Volatility detected that the profile is suitable for a
memory image of a system with a Linux kernel and ARM architecture, and added
this information to the profile name. This resulted in the profile name
LinuxNexus5ARM. This is the profile name that must be passed to Volatility via
the --profile parameter in this example.

Because Android is a Linux-based operating system, the Linux plugins must be
used to analyse Android memory. The names of Linux-compatible plugins are
prefixed by linux_. An overview of these plugins is included in the info output of
the previous command.

The following screenshot shows an example Volatility command which executes
the linux_pslist plugin. This plugin extracts a list of running processes from
the memory image. Note that the screenshot is cropped to only include the first
few processes.

Note that Volatility enables you to save command line parameters in a
configuration file called volatilityrc. This file will be parsed when stored in the
current working directory. The configuration file on the left was created to shorten
the following commands in this article. Additionally, the alias vol.py was created
for the command python2 ~/volatility/vol.py.

22 | PwC

There are currently over 70 Linux plugins. This article demonstrates only a
couple of those.

linux_arp

The linux_arp plugin extracts ARP cache from the memory image. ARP cache
keeps track of MAC addresses that were resolved via the Address Resolution
Protocol (ARP). This cache can give a view on systems that the mobile device
recently connected to within the same subnet.

In the above screenshot, the IP address 192.168.1.1 is seen. This IP address
typically corresponds to the IP address of the default gateway. This information
could help to indicate that the Android device connected to a particular wireless
access point, by matching the MAC address in this command output to the MAC
address of the corresponding access point. Other artefacts such as SSIDs of
saved access points, maps application data and GPS data may further help to
find the location of that wireless access point.

Note that connections by the loopback interface were filtered out of the above
example. To receive more information about the network connections, for instance
which process they belonged to, the linux_netstat plugin can be used. This plugin
lists all open sockets, but unfortunately the plugin’s output was empty for every
Android memory sample tested during the creation of this article.

linux_enumerate_files

The linux_enumerate_files plugin can find files and directories in memory by
identifying and parsing file system structures. The plugin outputs the inode address,
inode number and file path.

linux_route_cache

The linux_route_cache plugin extracts routing cache from the memory image.
This cache can give a view on IP addresses that the Android device connected to.
Connections to these IP addresses could have been initiated by any
software on the device including the OS, system applications and user applications.

23 | PwC

The Linux kernel uses a page cache to save content of files that are loaded in
memory to improve performance. The linux_find_file plugin can extract files
from this page cache. However, utilizing this plugin to extract files from the
memory of several AVD devices and a Nexus 5 Android device gave poor results.
More specifically, most of the files that were extracted could not be opened by the
appropriate applications (based on file extension) and the file utility did
recognize most of the extracted files as a particular file type, which indicates that
the extracted files were corrupt. Luckily it is still possible to extract valid files from
memory by using file carving techniques instead, which is demonstrated in the
next section.

linux_lsof

The linux_lsof plugin displays a list of open files, similar to the lsof
command on Linux. This plugin can give more context about the files in memory
because it shows which process opened which file. For instance, if an image was
opened by a messaging application, this could indicate that the image was sent
or received via the application. Note that there are other reasons for a messaging
application to open images, for instance to let the user browse the images on the
device to select one or more to send. The directory in which the image is stored
and the conversation data of the messaging application could be further
inspected to obtain an indication of whether the image was sent or received.

24 | PwC

4.2. Other analysis techniques

Volatility currently does not have any
plugins to extract user data from
Android applications. Each application
stores data differently in memory and
due to the vast number of Android
applications, many of which are
regularly updated, it would be
impractical to write and maintain plugins
that extract application data. However,
relevant application data can still be
obtained by using general string
analysis and linear file carving
techniques.

Even though it is possible to extract
artefacts directly from a physical
memory image, it is in most cases
recommended to search and extract
data from the process memory instead.
The main reason for this is that the
virtual address space of a process is
continuous, unlike the data in a physical
memory image. More specifically, data
that crosses page boundaries in the
virtual address space may be split
across multiple locations in physical
memory. As a result, signatures might
fail to match these patterns in physical
memory. This is especially relevant to
keep into account when carving files
from memory that are larger than the
page size, which is typically 4 kB.

Another advantage of analysing
process memory is that you know which
process the matched patterns belong
to. This context is important to
determine the meaning and relevance
of data in memory and would be missed
when directly analysing the physical
memory image. Another advantage of
analysing process memory is that data
from irrelevant processes is filtered out,
which potentially results in less
irrelevant hits.

Analysing physical memory can still be
useful in certain cases, for instance
when looking for data related to
terminated processes. The virtual
address space of terminated processes
cannot be reconstructed, but remnant
data in freed pages that have not yet
been overwritten can still be recovered
from physical memory.

4.2.1. Pattern matching

This section demonstrates several
examples of application and system
data that could be extracted from a
Nexus 5 device via pattern matching,
in order to demonstrate the general
methodology and techniques that can
be used. There are several possible
approaches to matching patterns in
memory. One approach is to use
Volatility’s linux_yarascan plugin to
find signatures that match any textual or
binary patterns in the process memory
of one or more processes. Relevant
data to look for may include text
messages, browser history, call logs,
passwords etc. The following example
shows how the linux_yarascan plugin
is used to find HTTP Host headers in
the memory of the Opera browser
application. This can reveal browser
history even after the history was
deleted from the flash memory.

25 | PwC

In this example, only the process memory of the browser was searched by
passing its PID with the -p option. Omitting this option will cause the plugin to
search all processes but will take considerably longer. However, this could be a
good way to determine in which process(es) a certain pattern resided. By default,
the linux_yarascan plugin only searches the userland memory, but the kernel
memory can be included by passing the -K option. In this example, the YARA rule
was passed as a string with the -Y option, but it is also possible to pass a YARA
rule file with the -y option instead.

The same results can be obtained by extracting the process memory to disk with
the linux_dump_map plugin and searching the extracted memory regions with
utilities such as yara, strings and grep. The linux_dump_map plugin works by
identifying the starting and ending addresses of process’ memory ranges and
dumping each page within those ranges to disk. The addresses obtained by
Volatility match the addresses that would be obtained on a live system by reading
from /proc/<pid>/maps. Passing the PID with the -p option to the
linux_dump_map plugin will cause all mappings of the specified process to be
dumped. The linux_dump_map plugin also requires an output directory to be
passed with the -D parameter.

$ vol.py linux_dump_map -p 10471 -D linux_dump_map_output/

Note that the linux_dump_map plugin extracts all pages that are accessible to
the process, including pages that the process can access in kernel memory.
The strings utility can be used to extract all strings from the memory regions to
a new text file. To also extract Unicode strings, the strings utility should be run a
second time with the option -el.

$ strings -a linux_dump_map_output/*.vma > opera_browser.txt
$ strings -a -el linux_dump_map_output/*.vma >> opera_browser.txt

The resulting text file can then be searched with the grep utility. This technique
enabled to find back the same HTTP Host headers that were found previously with
the linux_yarascan plugin.

This approach can also be used to extract text messages from memory. The
following example shows text message content and metadata that was extracted
from the Kik Messenger process.

26 | PwC

This data reveals the message content, recipient, timestamp and more. Each
message was stored in a structured format: encapsulated by a message tag. By
searching for all strings containing the text “<message ”, all memory-resident
messages could be extracted from memory.

The extraction of text messages from memory could potentially reveal messages
that were deleted from the flash memory, or that were stored only in an encrypted
format on the flash memory. Some instant messaging applications such as
WhatsApp may be configured to require additional fingerprint authentication.
Inspecting the memory of the process could still reveal messages that might
otherwise not be accessed on the live Android device.

Inspection of the memory image also revealed data structures that contained
wireless access points information such as SSID and security key (PSK). This
data resided in the wpa_supplicant process. Note that the Android device
rebooted after it connected to the access point for the first time, so the PSK was
automatically loaded into memory again after rebooting the device.

In some cases, it might be difficult for the analyst to know which signature to use
to match relevant patterns in memory. For instance, searching for the PIN of a
SIM card that was unlocked on the Android device is not feasible by simply
matching all strings consisting of 4 digits, because there would be too many
irrelevant hits. One possible approach is to introduce the same kind of artefact on
a test device. For instance, when interested in how to obtain the PIN of a SIM
card from memory, you can insert a SIM card with a known PIN in a test device,

unlock the SIM card with the PIN, take a memory image of the test device and then
search for the known PIN in memory. This might reveal data in the near proximity of
the PIN that can be used to create a signature that matches the PIN data on other
devices as well. In the following example, looking for the known PIN “3961” revealed
nearby data in the memory of the test device such as “supplyPin()”, “simSlot” and
“pin:”, which could be used to create a signature.

Some digital forensics suites may be able to extract valuable system and user
application artefacts from memory by using their built-in signatures, even if the suites
are not designed to analyse memory images. The reason for this is that many
forensic suites are designed to recover data from hard drives by using file carving
and pattern matching techniques, in order to recover files and artefacts from
unallocated space or from hard drives with a corrupt filesystem. Some suites can
extract files and artefacts from memory images in the same way. For instance, the
commercial forensic tool called Magnet Axiom could be used to extract valuable
artefacts from a memory image of the Nexus 5 device.

27 | PwC

The analysis of Android memory was not supported by the tool. However, by
changing the file extension of the memory image to “.dd”, the tool was tricked into
processing the memory image as a raw disk image. Of course, no file system
was present in the image, but the tool analysed the data in the same way as it
would analyse unallocated disk space, and was able to extract SMS messages,
WhatsApp messages, Google search queries, Facebook activity and more. The
following screenshot shows messages that were extracted by Magnet Axiom from
the default Android Messages app (left) and from WhatsApp (right). Note that
these are screenshots of the Magnet Axiom tool, which visualized the chat
messages in a format that represents a messaging application interface.
These are not actual screenshots of the Android device.

28 | PwC

4.2.2. File carving

File carving techniques can be used to
extract files from memory images that
are not stored on the flash memory of
Android devices. In the following
example, the term “fox” was searched
on Google Images within the Firefox
browser on the Nexus 5 device. The
device’s memory was then acquired
and the linux_dump_map plugin was
used to extract Firefox’ process
memory. The extracted memory was
then carved by Foremost, which is a file
carving tool that can be installed via
Aptitude.

$ cat linux_dump_map/*.vma |
foremost -t png,jpg

Foremost was able to extract all
thumbnail images that were loaded on
the Google Images results page.
Additionally, Foremost extracted
screenshots of the browser from
memory. These screenshots are
automatically taken by Firefox and
displayed in the overview of opened
tabs. The following screenshot shows
a couple of the extracted images.

29 | PwC

This article has discussed and demonstrated the complete
capture of volatile memory from Android devices and covered
several analysis techniques to extract system and user data
from the memory image. By using the techniques
demonstrated in this article, we’ve shown it is possible to
extract artefacts that cannot be extracted from the internal
flash storage of the Android device, either because the
artefacts are never stored on the flash storage in the first
place, or because they are encrypted before being stored.
Some of these artefacts, including passwords and text
messages, could be of high value during forensic
investigations.

At this moment, there are several technical limitations that could hinder the memory
acquisition in a real-case forensic investigation. The first major limitation is the need to
have root privileges on the Android device in order to acquire its memory as
demonstrated in this article. It is likely that the investigated device in a real-case
scenario is not rooted yet. Even though it is in most cases possible to root the Android
device, the device will most likely need to be rebooted in the process, which would
wipe the original contents of memory. The second major limitation is the need for the
Android device to enable loadable module support. The default kernel of some Android
devices does not enable module loading, in which case it is not possible to acquire the
memory with a kernel module as demonstrated in this article. It is possible to replace
the kernel of the Android device with a modified version which does enable module
loading, but this requires the device to be rebooted, which wipes the original contents
of memory. Therefore, future work would be useful to develop a more feasible method
to acquire memory from the Android device without having to reboot the device, for
instance by extracting memory via JTAG without removing the battery of the device in
the process.

5. Conclusion

30 | PwC

Ligh, M. H., Case, A., Levy, J.,
& Walters, A. The art of memory
forensics: detecting malware and threats
in windows, linux, and Mac memory.
New York: Wiley; 2014.

Sylve J, et al., Acquisition and analysis
of volatile memory from android devices,
Digital Investigation (2012),
doi:10.1016/j.diin.2011.10.003

References

31 | PwC

Dominique Pauwels
dominique.pauwels@pwc.com

Author

Thank you

© 2021 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms,
each of which is a separate legal entity. Please see www.pwc.com/structure for further details.

