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Android has been the best-selling operating system 
worldwide on smartphones since 2011 and as of May 2017 
there are more than two billion monthly active Android 
devices.1 As a consequence, the ability to analyse Android 
devices for forensic purposes has become increasingly 
important.

An important area in forensic analysis is the analysis of volatile memory. Volatile 
memory contains a wealth of information about the operating systems and userland 
software. Lots of this data, such as network artefacts and passwords, are not stored on 
non-volatile flash memory. Other artefacts, such as text messages, are often encrypted 
before they are stored on flash memory but still reside in plain text in memory.
The analysis of volatile memory of Windows and Linux operating systems has become 
a common practice by forensic investigators and malware analysts, but this is not the 
case for Android devices. The analysis of volatile memory of Android still seems to be a 
blind spot for many analysts.

This article discusses a hands-on approach for software-based acquisition and 
analysis of volatile memory of Android devices. The term software-based relates to the 
method of acquisition, which is performed by executing software on a live Android 
device. This article also discusses the analysis of the memory image and 
demonstrates a few techniques to extract relevant system and user application data 
from memory. Following the same approach should enable you to identify and extract 
much more relevant information.

Note that the exact method to acquire and analyse Android memory depends on many 
factors including the device’s manufacturer, Android version, kernel version and 
configuration, CPU architecture and more. This article therefore does not attempt to 
serve as a complete manual for all possible Android devices but applying the same 
approach should enable you to analyse memory of most of them (though in some 
cases with certain limitations).

 1 https://twitter.com/Google/status/864890655906070529?s=20

1. Introduction
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This section explains how to 
prepare your host computer
and the Android device to be 
analysed (further referred to 
as the “target device”) for 
memory acquisition and 
analysis. The process that is 
explained in this article 
requires a Linux or macOS 
system as host due to the 
need to build Android 
source files, which is 
currently not supported on 
Windows. All examples in 
this article are applicable for 
a 64-bit Ubuntu 18.04 
desktop system.

2.1. Android Studio and adb

Although not strictly necessary, it is 
recommended to install Android Studio 
on your host. Android Studio offers the 
ability to run emulated Android devices, 
which can greatly aid the testing of 
memory acquisition and analysis 
methods. Android Studio also comes 
with the Android Debug Bridge (adb).

This is a command-line tool that lets 
you communicate with an Android 
device that is connected to your host. 
The tool offers a Unix shell that you can 
use to run commands on the Android 
device, which will be used to acquire 
the contents from memory, as explained 
later in this article. Note that adb can 
also be installed via Aptitude, without 
the need to install Android Studio.

The instructions to install Android Studio 
are straightforward and can be found on 
https://developer.android.com/ 
studio/install. On Linux, the installation 
can be started by extracting the 
installation ZIP file, which can be 
downloaded from the website of 
Android, to any location on your host. 
Then, Android Studio can be launched 
by executing 
android-studio/bin/studio.sh. 

When executed for the first time, this 
will launch a setup wizard. In this 
wizard, the standard setup can be 
selected, which will install all 
components that are required to 
perform the memory acquisition and 
analysis actions that are explained in 
this article.

Note that on 64-bit Ubuntu, additional 
32-bit libraries need to be installed:

$ sudo apt install libc6:i386 
libncurses5:i386 libstdc++6:i386 
lib32z1 libbz2-1.0:i386

To utilize adb tools with an Android Virtual 
Device (AVD), the user account of your 
host needs to be a member of the 
plugdev group and the default set of 
udev rules for Android devices should be 
installed:

$ usermod -aG plugdev $LOGNAME
$ sudo apt install 
android-sdk-platform-tools-common

For more information about this, refer to 
https://source.android.com/setup/build/ 
initializing.

To utilize adb on a physical Android 
device, USB debugging needs to be 
enabled. This is done in the developer 
options in the settings of the Android 
device. Note that on Android 4.2 and 
higher, the developer options are hidden 
by default.

2. Preparing your host and the Android device
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The options can be revealed by tapping 
the “Build Number” in the settings 
7 times. Note that the first time that a 
command is executed via adb, the 
Android device will display a prompt to 
ask whether your host is allowed to 
perform USB debugging.

2.2. Setting up an AVD

Before getting started with Android 
memory forensics, it can be useful to 
set up an Android Virtual Device (AVD) 
on your host for testing purposes. An 
AVD is a configuration that defines the 
characteristics of an Android device. 
This device can be simulated in the 
Android Emulator, which is part of 
Android Studio. The most important 
advantage of testing on an AVD is the 
flexibility to change components of the 
device such as Android version, kernel 
version, CPU architecture etc.

After the installation of Android Studio, a 
new AVD can be created in Android 
Studio’s AVD Manager. Here, an image 
without Google Play should be selected 
because these allow root access, which 
is not the case for images with Google 
APIs. When selecting an ARM image,

it is recommended to choose a 32-bit 
image because analysis of 64-bit ARM 
is not yet supported by the analysis tool 
that is discussed later (Volatility). For 
the examples in this article, an 
armeabi-v7a image was used. After 
selecting the image, the SD card should 
be configured in the advanced AVD 
settings to have a larger capacity than 
the RAM, to ensure that a full memory 
image can be stored on the SD card.

At this stage, the AVD can already be 
launched in the emulator. However, to 
make the AVD ready for testing, it 
should be launched with a kernel image 
that is compiled from its source code on 
your host. This way, an exact copy of 
the kernel that is running on the Android 
device will be available on your host. 
This copy will later in this article be 
used to cross compile two modules: one 
to acquire the contents of memory and 
the other to improve memory analysis 
capabilities. Eliminating any differences 
between the kernel on your host and 
the kernel on the Android device will 
enable you to get the best possible 
results.

2.3. Rooting

The memory acquisition that is 
explained in this article makes use of a 
loadable kernel module (LKM) to obtain 
the contents of memory. The module 
needs to be loaded into the kernel of 
the Android device, for which root 
privileges are required. Rooting the 
Android device is not within the scope 
of this article and the procedure differs 
for each device. However, there is 
plenty of documentation online on how 
to root various Android devices. The 
memory acquisition and analysis 
process that is documented as example 
in this article was performed on a Nexus 
5 device, which was rooted using Nexus 
5 CF-Auto-Root 
(https://forum.xda-developers.com/ 
google-nexus-5/orig-development/ 
nexus-5-cf-auto-root-t2507211).
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3. Memory acquisition

In the context of forensic 
analysis, as much data as 
possible should be 
safeguarded.

Therefore, the goal is to acquire a 
physical memory image of Android 
devices. Note that various tools exist 
that can dump the address space of 
individual processes, such as Fridump 
(https://github.com/Nightbringer21/fridu
mp), but these are not discussed in this 
article. Instead, this article will discuss 
the memory acquisition process with the 
Linux Memory Extractor (LiME). This 
tool can acquire physical memory from 
Linux devices and Linux-based devices 
such as Android 
(https://github.com/504ensicsLabs/LiME
). It was first presented at Shmoocon in 
2012 by Joe Sylve. LiME is a loadable 
kernel module (LKM) that performs the 
entire memory acquisition within the 
kernel, without context switches 
between userland and the kernel. This 
makes LiME forensically sound and 
minimizes discrepancies between the 
original contents in memory and the 
data in the memory image.

Because LiME is a kernel module, 
it needs to be compiled for the kernel 
version that is running on the target 
device. For devices that run a Linux 
operating system, this can be 
accomplished by compiling the code 
directly on the target device (although 
the best practice is to compile on a 
duplicate dummy system to avoid 
tampering with the investigated 
system). However, this approach is not 
suitable for Android devices because it 
is not feasible to compile code on the 
Android device directly. Instead, the 
LiME module should be compiled on a 
Linux or macOS host with a cross 
compiler. Before this can be done, the 
kernel of the target device first needs to 
be compiled on your host. This process 
is explained in the next section.

3.1. Compiling a Linux kernel

The Android operating system’s kernel 
is based on the Linux kernel, so the 
compilation process is similar to that of 
a common Linux desktop or server 
kernel. To get started, an Android build 
environment needs to be set up on 
your host.

This entails the installation of software 
that is required to compile Android 
source code and kernels. A Linux or 
Mac system is required to do this, 
Windows is not currently supported. 
The process that is demonstrated in this 
article is applicable for a 64-bit Ubuntu 
18.04 desktop host. 

The most up-to-date instructions for 
Ubuntu and other operating systems 
are available on the website of Android 
(https://source.android.com/setup/build/ 
initializing).

The following command installs the 
required packages on a 64-bit Ubuntu 
18.04 desktop system:

$ sudo apt install git-core 
gnupg flex bison build-essential 
curl g++-multilib 
lib32ncurses5-dev lib32z1-dev 
libgl1-mesa-dev libxml2-utils 
xsltproc
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Compiling the kernel of a physical 
Android device and an AVD is similar. 
However, the use case for the physical 
device and AVD in this article is 
different, which changes the approach. 
The goal for the physical Android device 
is to preserve its state as much as 
possible. Therefore, an identical kernel 
should be created on your host without 
tampering with the target device. This 
involves identifying and obtaining the 
kernel source code, kernel configuration 
and cross compiler that was used by 
the manufacturer of the device in order 
to recreate an identical (or similar) 
kernel on your host. For the AVD, the 
opposite approach is taken. Instead of 
recreating the original kernel of the 
AVD, any compatible kernel can be 
created and used to replace the original 
AVD kernel. Therefore, the approach for 
a physical device and an AVD are 
discussed separately in the next two 
sections.

3.1.1. Compiling and running the 
Goldfish kernel (AVD)

The Goldfish kernel was created by 
Google to be used with Android Studio’s 
emulator. It contains additional 
functionality that enables the host of the 
emulator to interact with the AVD. 
Compiling the Goldfish emulator is a 
prerequisite for compiling the LiME 
module. The resulting kernel image can 
also be used to emulate the AVD that 
was created in section 2.2, which 
ensures that the LiME module is 
optimally compatible with the AVD. 
Additionally, compiling the kernel will 
yield the System.map file. This is one 
of the two files that are required to 
create a Volatility profile, which is 
needed to analyse the memory image 
with Volatility, as discussed later in this 
article.

The goldfish kernel can be cloned from 
googlesource.com:

$ git clone 
https://android.googlesource.com
/kernel/goldfish

After cloning the kernel, one of its 
branches needs to be checked out. 
Note that the current Android emulator

requires a Linux kernel of version 3.10 
or higher. During the creation of this 
article, the goldfish 3.18 kernel was 
tested and confirmed to be compatible 
with the LiME module.

$ cd goldfish
$ git branch -a
$ git checkout 
remotes/origin/android-goldfish-
3.18

After cloning the source code and 
performing a checkout, a compiler 
needs to be chosen to cross compile 
the source code with. The Android 
Open Source Project (AOSP) includes 
several compilers located in the 
directory 
android-source/prebuilts/gcc/lin
ux-x86-arm. Alternatively, compilers 
can be downloaded from 
https://android.googlesource.com. If an 
ARM image was selected for the AVD, 
then an arm-eabi-gcc compiler should 
be used to compile the goldfish kernel. 
The process described in this article 
utilized the arm-eabi-4.8 compiler: 

$ git clone --depth=1 
https://android.googlesource.com
/platform/prebuilts/gcc/linux-x8
6/arm/arm-eabi-4.8
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Before compiling the source code, 
some variables of the Makefile need to 
be configured. By default, the ARCH 
variable is set to the architecture of 
the device on which the make 
command is executed, which would 
likely be x86_64 when running a 64-bit 
Linux system. In this example, the 
kernel is compiled for an ARM AVD, so 
this variable needs to be overwritten. 
This can be done by either passing 
ARCH=arm to the make command or by 
setting ARCH as an environment 
variable:

$ export ARCH=arm

The variable CROSS_COMPILE also 
needs to be set. This variable specifies 
the common prefix of all executables 
used during compilation. These 
executables are located in the bin 
directory of the ARM compiler.

$ export 
CROSS_COMPILE=~/Android/arm-eabi
-4.8/bin/arm-eabi-

Inspection of the Makefile shows that 
it defines the full path to the required 
executable files. For instance, the full 
path to arm-eabi-gcc is defined by 
the line CC = $(CROSS_COMPILE)gcc.

To remove any previously generated 
files, navigate back to the kernel 
repository and execute make clean:

$ cd ~/goldfish
$ make clean

The last step before compiling is to set 
up a working config. This is a 
configuration file that defines the 
features of the compiled kernel. For 
instance, a relevant option that is 
defined by this config file is whether the 
kernel should support the loading of 
kernel modules. Loadable module 
support is required in order to acquire a 
memory image with LiME, because 
LiME is a loadable kernel module that 
needs to be loaded into the kernel.

The kernel repository likely contains 
one or more config files, in this case 
located in the directory 
goldfish/arch/arm/configs. To 
obtain the exact config file that was 
used by the manufacturer to compile 
the kernel of the target device (the AVD 
in this case), the original config file can 
be extracted from the device:

$ ~/Android/Sdk/platform-tools/adb 
pull /proc/config.gz
$ gunzip config.gz

Note that the original config file is not 
present on all Android devices. The 
original config file that was used for the 
compilation of the kernel by the 
manufacturer determined whether a 
copy of itself is made available on the 
target device via the option “Enable 
access to .config through 
/proc/config.gz”.

To utilize the config file, copy it to a file 
called .config in the kernel repository 
and run the make menuconfig 
command:

$ cp config ~/goldfish/.config
$ make menuconfig

This will display a menu with the various 
kernel features that can be configured. 
The options “Enable loadable module 
support” and “Module unloading” should 
be enabled here, if this is not the case 
already. Finally, to compile the kernel, 
execute the following command in the 
kernel repository:

$ make modules_prepare
$ make
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The compilation will take several 
minutes. When successful, the kernel 
image (zImage) will be located in the 
directory arch/arm/boot. The 
compilation also generates the 
System.map file. This file is required to 
create a Volatility profile, which is 
explained later in this article.

The AVD can be launched with the new 
kernel image by launching the Android 
emulator from the command line with 
the option -kernel, followed by the 
path to the kernel image. Note that the 
directory ~/Android/Sdk gets created 
when launching Android Studio for the 
first time and running the standard 
setup.

$ cd ~/Android/Sdk/emulator
$ ./emulator -list-avds
$ ./emulator -avd Nexus_5_API_23 
-kernel 
~/goldfish/arch/arm/boot/zImage 
-show-kernel -verbose
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3.1.2. Compiling the kernel of a physical Android device

The kernel source code of physical Android devices can usually be downloaded 
from the developer or manufacturer’s website. Simply searching the 
manufacturer’s name of the device followed by “kernel source” online should lead 
you to a repository. While the steps detailed in this article will differ for each 
device, the approach remains the same.

The memory acquisition that is detailed in this article is applicable for a Nexus 5 
device. This is an Android smartphone that was developed by Google and LG 
Electronics. The kernel source code of Google devices is hosted on 
https://android.googlesource.com/kernel. Some manufacturer websites enable 
you to find the kernel repository by looking for the device model number, but this 
is currently not the case here. However, the website contains a repository called 
“msm” which is described as “Kernel tree for Qualcomm chipsets”. Online 
documentation states that the Nexus 5 contains a Qualcomm SoC (Qualcomm 
Snapdragon 800), so based on this information, the “msm” repository was 
selected.

$ git clone https://android.googlesource.com/kernel/msm
$ cd msm

The git command downloaded the complete msm kernel repository, including all 
branches. The LiME module should be compiled against the exact same kernel 
version that is running on the Android device. To know which version this is, the 
“Kernel version” section in the Android device’s settings can be inspected. This 
section states the version and date of the kernel:

One possible approach to find the corresponding branch in the kernel repository, 
is to compare the version numbers and dates. An overview of branches and their 
corresponding dates can be listed by executing the following command from within 
the kernel repository:

$ git branch -avv | while read; do echo -e $(git log -1 
--format=%ci $(echo "_$REPLY" | awk '{print $2}' | perl -pe 
's/\e\[?.*?[\@-~]//g') 2> /dev/null || git log -1 
--format=%ci)" $REPLY"; done | sort -r | cut -d ' ' -f -1,4-

The following screenshot shows a snippet of the command output:
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The next few steps are identical to the steps that were taken while setting up an AVD 
in the previous section, namely setting some environment variables and setting up a 
working config. For more details about these steps, please refer to section 3.1.1.

$ export ARCH=arm
$ export CROSS_COMPILE=~/Android/arm-eabi-4.8/bin/arm-eabi-

In this case, the config file was not present on the Android device, likely because the 
kernel option “Enable access to .config through /proc/config.gz” was not enabled by 
the manufacturer. If the config file cannot be obtained from the device, a config file 
from the kernel repository can be used instead. The msm kernel repository contained 
144 configuration files, located in the arch/arm/configs directory. The codename 
of the Nexus 5 (“Hammerhead”) indicated that the corresponding config file is called 
hammerhead_defconfig.

In this example, the operating system of the Nexus 5 device is Android 6.0.1 
(Marshmallow), its kernel version is 3.4.0 and the kernel compilation date is 
19 September 2016, so there is a clear match with the branch called 
android-msm-hammerhead-3.4-marshmallow-mr3.

$ git checkout -t 
remotes/origin/android-msm-hammerhead-3.4-marshmallow-mr3

The next step is to find the right compiler to compile the kernel source code with. 
The compiler to be used depends on the CPU architecture of the target device 
and ideally you should use the same compiler that was used by the 
manufacturer. The CPU architecture can be identified by executing the getprop 
command with the option ro.product.cpu.abi on the target device via adb:

This command showed that the CPU architecture of the Nexus 5 is 
armeabi-v7a. Now, the version of the compiler that was used can be obtained 
by reading from /proc/version:

From the information in the above screenshots it can be concluded that the 
manufacturer used the GNU Compiler Collection (GCC) version 4.8 to compile 
the kernel for an armeabi-v7a architecture. With this information, the 
corresponding compiler can be found on https://android.googlesource.com.

$ git clone --depth=1 
https://android.googlesource.com/platform/prebuilts/gcc/linux-x86
/arm/arm-eabi-4.8
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Finally, to compile the kernel, execute the following commands from within the kernel 
repository:

$ make modules_prepare
$ make

The compilation will take several minutes. When successful, the kernel image will be 
located at arch/arm/boot/zImage. The directory arm in this example represents the 
architecture of the kernel image and will differ based on the architecture. The 
compilation also generates the System.map file. This file is required to create a 
Volatility profile, which is explained later in this article. Note that in this case a 
zImage-dtb image was created, which is a kernel image with a device tree blob 
(DTB) appended to it.

To inspect or change the options in the configuration file, copy it to the root 
directory of the repository and execute the make_defconfig.sh script with the 
configuration file as parameter:

$ cd ~/Android/msm
$ cp arch/arm/configs/hammerhead_defconfig ~/Android/msm/
$ ./make_defconfig.sh hammerhead_defconfig

This will present a menu with the kernel configuration options. Here, the options 
“Enable loadable module support” and “Module unloading” are of interest. For 
some default kernels that are shipped with Android devices, these options were 
not enabled by the manufacturer. This hinders the memory acquisition process, 
because the LiME module cannot be loaded into the stock kernel. A possible 
workaround is discussed later in this article. For this workaround, a kernel image 
which does enable module loading is required. Therefore, it is recommended to 
enable both options now, in order to already obtain a suitable kernel image for 
this workaround. Enabling these options is not needed if you know that the 
kernel of the target device already supports module loading.

Upon exiting and saving the configuration menu, the changes will be written to 
.config.
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3.2. Compiling LiME

The first step to compile LiME is to 
clone its source code onto your host.

$ git clone --depth=1 
https://github.com/504ensicsLabs
/LiME.git
$ cd LiME/src

Now, the Makefile needs to be edited 
to include the path to the compiled 
target kernel (KDIR), the path to the 
cross compiler which was used to 
compile the kernel source code 
(CCPATH), the target kernel version 
(KVER) and its architecture (ARCH).

$ nano Makefile 

The LiME module can now be compiled 
by executing the following commands 
from the root directory of the LiME 
repository.

$ make clean
$ make

This generated a file called 
lime-3.4.0.ko, where 3.4.0 will match 
the value that was assigned to KVER in 
the Makefile.

3.3. Obtaining a memory 
image

At this stage, the only thing left to do to 
acquire the contents of memory is to 
load the LiME module in the kernel of 
the target device. The module can be 
copied to the target device via adb’s 
push command:

$ ~/Android/Sdk/platform-tools/adb 
push ~/Android/LiME/src/
lime-goldfish.ko 
/sdcard/lime-goldfish.ko

The AVD used as example in this article 
failed to copy the file because its file 
system was read-only:

adb: error: failed to copy 
<source> to <dest>: Read-only 
file system.

This can be solved by remounting the 
filesystem as read-write, as root. In this 
example, root access was granted 
automatically upon executing adb 
shell, but if this is not the case then 
root access can be acquired by running 
the su command (granted that the 
target device is an AVD without Google 
APIs or a physical device that was 
rooted).
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$ ~/Android/Sdk/platform-tools/adb 
shell
root@generic:/ # su
root@generic:/ # mount -o 
rw,remount rootfs /

After copying the LiME module to the 
target device, open a shell with root 
privileges on the device (if not done 
already) and load the LiME module via 
the insmod command. 

$ ~/Android/Sdk/platform-tools/adb 
shell
root@generic:/ # su
root@generic:/ # cd /sdcard/
root@generic:/ # insmod 
lime-goldfish.ko 
"path=android.lime format=lime"

The output filename is passed via the 
path parameter. The format can either 
be raw, padded or lime. The raw 
format will store data of acquired 
sections after each other in the output 
file. However, if certain regions cannot 
be acquired, this means that the offset 
of consecutive regions in the memory 
image will no longer match their original 
offset in physical memory. This can be 
avoided by using the padded format, 
which adds zeros to the output file to 
replace any regions that cannot be 

captured. The lime format also keeps 
track of the original offsets of sections, 
but by storing this information as 
metadata in the memory image. These 
offsets are then used by compatible 
analysis tools to reconstruct the original 
memory layout.

Upon loading the module into the target 
kernel with the insmod command, the 
module will immediately start writing the 
content of memory to a file. The file can 
then be copied to your host with adb’s 
pull command:

$ ~/Android/Sdk/platform-tools/adb 
pull /sdcard/android.lime

Note that the memory acquisition with 
LiME can also be done over a network. 
This may be preferred when the 
unallocated space of the Android 
device’s storage should not be 
overwritten for forensic purposes. 
Instead of acquiring the data via a 
physical network, it can be acquired via 
adb’s forward command, which sets up 
port forwarding. The following example 
sets up forwarding of the Android 
device’s port 4444 to the host’s 
port 4444:

user@linux:~$ 
~/Android/Sdk/platform-tools/adb 
forward tcp:4444 tcp:4444

LiME can then be instructed to send data 
to port 4444 by passing the protocol and 
port number instead of a filename to the 
path parameter:

root@generic:/ # insmod lime.ko 
"path=tcp:4444 format=lime"

The data can then be received and saved 
to a file on your host with netcat:

$ nc localhost 4444 > memory.lime

By following the procedure described 
above, it was possible to acquire a full 
memory image of the AVD that was 
emulated on the host. Inspection of the 
memory image with the strings utility 
revealed valid data such as app names, 
URLs and more.

At this stage, the memory acquisition 
process should be complete for any 
device of which the kernel supports 
module loading. Some devices do not 
support this, and this causes an 
additional obstacle for the memory 
acquisition process, as was the case for 
the Nexus 5 device. The stock kernel of 
this device did not enable module loading 
and attempting to insert the LiME module 
therefore returned the following error:
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This is possible to bypass by replacing 
the original kernel image of the target 
device with a custom kernel image that 
does support module loading. Such a 
kernel image was already created in 
section 3.1.

A major drawback to replacing the 
original kernel image is that the target 
device needs to reboot in the process. 
This means that the original content of 
memory will be lost. Therefore, this 
workaround is less suitable to perform a 
forensic analysis of a suspect’s Android 
device. However, it may still be useful to 
inspect memory after a reboot, for 
instance to observe persistent malware 
on the device.

The next section describes the process 
to create and flash a new boot image. 
This is only needed if the memory 
image could not be acquired at this 
point because the stock kernel of the 
device does not enable module loading. 
The next section can therefore be 
skipped if the memory image was 
already acquired at this stage.

3.4. Replacing the stock 
boot image

To replace the stock kernel on the target 
device with a custom compiled kernel 
image, a new boot image needs to be 
created. A boot image consists of a 
kernel image and a ramdisk.

To keep the target device as close to 
the original state as possible, it is 
recommended to extract and alter the 
original boot image from the target 
device. The following commands copy 
the boot image of a Nexus 5 to its 
shared storage (sdcard) and copy it via 
adb to the host.

Host

$ ~/Android/Sdk/platform-tools/adb 
shell

Nexus 5

shell@hammerhead:/ $ su
root@hammerhead:/ # cp 
/dev/block/platform/msm_sdcc.1/b
y-name/boot /sdcard/boot.img

Host

$ ~/Android/Sdk/platform-tools/adb 
pull /sdcard/boot.img boot.img

The recommended way to modify the 
boot image is by using the 
CyanogenMod tools called mkbootimg 
and unpackbootimg, which can be 
cloned from the android_system_core 
repository on Github:

$ git clone --depth=1 
https://github.com/CyanogenMod/a
ndroid_system_core.git

The mkbootimg and unpackbootimg 
tools can optionally be copied to 
/usr/bin to add them to a location that 
is in $PATH:

$ sudo cp 
android_system_core/mkbootimg/mk
bootimg /usr/bin
$ sudo cp 
android_system_core/mkbootimg/un
packbootimg /usr/bin
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To unpack the original boot image, run the unpackbootimg tool with the filename 
of the boot image passed with the -i parameter:

This command extracts the components of the boot image and writes values 
such as offsets to new files on disk. Note that the values that were written to 
boot.img-ramdisk_offset, boot.img-second_offset and 
boot.img-tags_offset need to be edited to contain the prefix 0x. Otherwise, 
the values won’t be interpreted as hexadecimal values by the mkbootimg tool.

Now, all components can be packed into a new boot image in which the original 
kernel image is replaced by the kernel image that was compiled from source in 
section 3.1.

The --kernel parameter points to the kernel image that was created in section 
3.1 (zImage-dtb). Note that instead of copying all offset values into this 
command, the values are inserted in the command by reading the files created 
by unpackbootimg. The output filename is passed with the --output parameter 
(new-boot.img).
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Booting the Android device from the 
new boot image, or permanently 
overwriting the original boot image with 
the new image, can be done with the 
fastboot tool. This tool can be 
installed via Aptitude:

$ sudo apt install fastboot

Before utilizing fastboot, the target 
device’s bootloader needs to be 
accessed. This is done by powering 
down the device and then pressing a 
certain combination of buttons. The 
combination differs based on the 
device, but online documentation 
specifies the combination for various 
devices. To enter the bootloader on the 
Nexus 5, the power button and volume 
down button had to be pressed and 
held at the same time.

After entering the bootloader, the 
Android device needs to be connected 
via USB cable to the host. Then, the 
device can be instructed to boot from 
the new boot image:

$ sudo fastboot boot 
new-boot.img

Now, the Android device should boot 
just like before and there should not be 
any noticeable difference, as the only 
thing that was changed is the ability to 
load kernel modules. Note that the 
above fastboot command did not 
overwrite the original boot image of the 
Android device. Therefore, if anything 
on the Android device would 
malfunction, it is possible to restore the 
device to its original state by simply 
rebooting the device.

After booting the Nexus 5 from the new 
boot image, it was possible to acquire a 
memory image with LiME by performing 
the steps that were explained in the 
previous section.
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A physical memory image contains application and kernel 
data in an unstructured manner. This section explains the 
basics of how to make sense of the data in the 
memory image.

The memory contains a wealth of data related to the operating system and user 
applications. User application data such as text messages, browser history and 
pictures can be extracted using string analysis and file carving techniques, as 
demonstrated in section 4.2. To extract general system information such as running 
processes and network connections, the Volatility framework is recommended.

4.1. Volatility

Volatility is an open source framework that is capable of extracting and analysing
data from Windows, Linux and macOS memory images (https://github.com/ 
volatilityfoundation/volatility). The analysis of 32-bit ARM Linux-based devices, such as 
Android, is also supported. Note that at the time of writing, Volatility does not yet 
support the analysis of memory images of 64-bit ARM devices. One of the co-authors 
of Volatility, Andrew Case, stated in September 2018 that this functionality is not yet 
implemented due to low demand.

Volatility’s functionality mostly consists of plugins. A Volatility plugin is essentially
a Python script that extends Volatility and that is dedicated to extracting specific 
information from a memory image, such as information on running processes, network 
connections, handles and so on.

Volatility can be installed via Aptitude, but it is recommended to run the Python source 
code from Github instead, to have the latest version. Before analysing Android memory 
with Volatility, a profile needs to be created. This is explained in the next section.

4. Android memory analysis techniques
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4.1.1. Creating a Volatility profile

A Volatility profile is a file that contains information about a specific kernel, which 
is needed by Volatility to find and reconstruct data from a memory image in a 
structured format. Volatility includes pre-made Windows profiles, which means 
that Windows memory images can be analysed without having to create a profile. 
However, Volatility does not include any Linux profiles. The reason for this is that 
there are too many different Linux kernel versions to include a profile for each 
version. Therefore, it is generally up to the analyst to create a Volatility profile for 
analysing Linux or Android memory images.

A Volatility profile for Linux is a ZIP archive that contains two files: System.map 
and module.dwarf.

System.map contains a lookup between all symbol names from the Linux kernel 
image and their addresses in memory. This System.map file is generated during 
the compilation of the kernel. The following screenshot shows the first few lines 
(out of more than 80,000) of the System.map of the stock Nexus 5 kernel:

The kernel source code of the target device was already compiled in section 3.1., 
which means that the System.map file should already be present in the root 
directory of the kernel repository.

The second file that is part of the Volatility profile is called module.dwarf. This file 
contains a collection of VTypes. These are structure definitions used by Volatility to 
represent C data structures (used by Linux kernel) in Python (used by Volatility). 
Below is a simplified example of how a C data structure is represented as a VType.

The name of the structure (proc) becomes the name of a dictionary key, which 
contains the members along with their types and offset from the base of the structure 
(in this example an integer, a character array and a pointer to a string).
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The module.dwarf file is obtained by compiling a dummy kernel module that 
declares members of all types needed by Volatility for the target kernel, and then 
extracting the DWARF symbols from the dummy module with the dwarfdump tool. 
The source code of this module is included in the repository of Volatility and is 
located at volatility/tools/linux/module.c. Note that compiling the module 
will automatically instruct the dwarfdump tool to extract DWARF symbols from the 
resulting module, so dwarfdump should be installed first:

$ sudo apt install dwarfdump

The next step is to clone Volatility from Github and to edit the Makefile of the 
dummy module (module.c), which is located under volatility/tools/linux.

$ git clone --depth=1 
https://github.com/volatilityfoundation/volatility.git
$ cd ~/volatility/tools/linux

The Makefile needs to be edited to include the path to the compiled target 
kernel (KDIR), the path to the cross compiler which was used to compile the 
kernel source code (CCPATH), the target kernel version (KVER) and its architecture 
(ARCH). Note that in the following screenshot the variable CROSS_COMPILE is 
defined as CCPATH followed by arm-eabi-. This may need to be changed to 
match the common prefix of all executables located in the bin directory of the 
cross compiler.

$ nano Makefile
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Now, the dummy module can be compiled by executing make. This will produce 
the module called module.ko and, as instructed by the Makefile, the 
dwarfdump tool will extract DWARF symbols from this module and write them to 
a new file called module.dwarf. The following screenshot shows the start of the 
module.dwarf file that was created for the Nexus 5.

The final step to create a Volatility profile for Linux is to add the System.map and 
module.dwarf files into a ZIP archive.

$ zip Nexus5.zip module.dwarf System.map

The creation of the Volatility profile is now complete and the usage of this profile 
with Volatility is demonstrated in the next section. Note that in some cases, the 
profile might not be compatible with the stock kernel that is running on the target 
device. If this is the case, Volatility will throw the error “No suitable address space 
mapping found” when attempting to run any plugin. This indicates that most likely 
there is a discrepancy between the kernel that is running on the target device and 
the kernel that was cross compiled on your host. This discrepancy could be 
caused by using different compilation options than the manufacturer. The kernel 
configuration options which were used during kernel compilation may drastically 
change the resulting kernel image. Possible solutions include cross compiling the 
kernel source code again with different options (different .config) or flashing the 
kernel that was compiled on your host to the target device in order to eliminate 
any discrepancies.

4.1.2. Memory analysis with Volatility

In general, Volatility requires three command line parameters: the filename of the 
memory image (--filename or -f), the name of the profile to be used (--profile), 
and the plugin to be executed (specified without any prefixing parameter). When 
analysing non-Windows memory images, the directory that contains the Volatility 
profile (the ZIP file created in the previous section) also needs to be passed to 
Volatility via the --plugins parameter. This directory may also contain third-party 
Volatility plugins (Python files), which expand the functionality of Volatility. Note that 
the --plugins parameter must be the first parameter that is passed to Volatility, 
otherwise it will not be processed.

Before the full Volatility command can be constructed, the name of the profile that 
was created in the previous section needs to be identified. This can be done by 
running Volatility with parameter --info.

$ python2 vol.py --plugins=~/Android/profiles --info
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Upon running this command, Volatility will parse the content of the profiles 
directory and include a list of valid profiles in its output. Any custom profiles 
should be listed in the output above the built-in Windows profiles. The name of 
the custom profile is based on the filename of the ZIP archive. In this example, 
the ZIP archive was called Nexus5.zip, which caused the text “Nexus5” to be 
present in the profile name. Volatility detected that the profile is suitable for a 
memory image of a system with a Linux kernel and ARM architecture, and added 
this information to the profile name. This resulted in the profile name 
LinuxNexus5ARM. This is the profile name that must be passed to Volatility via 
the --profile parameter in this example.

Because Android is a Linux-based operating system, the Linux plugins must be 
used to analyse Android memory. The names of Linux-compatible plugins are 
prefixed by linux_. An overview of these plugins is included in the info output of 
the previous command.

The following screenshot shows an example Volatility command which executes 
the linux_pslist plugin. This plugin extracts a list of running processes from 
the memory image. Note that the screenshot is cropped to only include the first 
few processes.

Note that Volatility enables you to save command line parameters in a 
configuration file called volatilityrc. This file will be parsed when stored in the 
current working directory. The configuration file on the left was created to shorten 
the following commands in this article. Additionally, the alias vol.py was created 
for the command python2 ~/volatility/vol.py.
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There are currently over 70 Linux plugins. This article demonstrates only a 
couple of those.

linux_arp

The linux_arp plugin extracts ARP cache from the memory image. ARP cache 
keeps track of MAC addresses that were resolved via the Address Resolution 
Protocol (ARP). This cache can give a view on systems that the mobile device 
recently connected to within the same subnet.

In the above screenshot, the IP address 192.168.1.1 is seen. This IP address 
typically corresponds to the IP address of the default gateway. This information 
could help to indicate that the Android device connected to a particular wireless 
access point, by matching the MAC address in this command output to the MAC 
address of the corresponding access point. Other artefacts such as SSIDs of 
saved access points, maps application data and GPS data may further help to 
find the location of that wireless access point.

Note that connections by the loopback interface were filtered out of the above 
example. To receive more information about the network connections, for instance 
which process they belonged to, the linux_netstat plugin can be used. This plugin 
lists all open sockets, but unfortunately the plugin’s output was empty for every 
Android memory sample tested during the creation of this article.

linux_enumerate_files

The linux_enumerate_files plugin can find files and directories in memory by 
identifying and parsing file system structures. The plugin outputs the inode address, 
inode number and file path.

linux_route_cache

The linux_route_cache plugin extracts routing cache from the memory image. 
This cache can give a view on IP addresses that the Android device connected to. 
Connections to these IP addresses could have been initiated by any
software on the device including the OS, system applications and user applications.
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The Linux kernel uses a page cache to save content of files that are loaded in 
memory to improve performance. The linux_find_file plugin can extract files 
from this page cache. However, utilizing this plugin to extract files from the 
memory of several AVD devices and a Nexus 5 Android device gave poor results. 
More specifically, most of the files that were extracted could not be opened by the 
appropriate applications (based on file extension) and the file utility did 
recognize most of the extracted files as a particular file type, which indicates that 
the extracted files were corrupt. Luckily it is still possible to extract valid files from 
memory by using file carving techniques instead, which is demonstrated in the 
next section.

linux_lsof

The linux_lsof plugin displays a list of open files, similar to the lsof 
command on Linux. This plugin can give more context about the files in memory 
because it shows which process opened which file. For instance, if an image was 
opened by a messaging application, this could indicate that the image was sent 
or received via the application. Note that there are other reasons for a messaging 
application to open images, for instance to let the user browse the images on the 
device to select one or more to send. The directory in which the image is stored 
and the conversation data of the messaging application could be further 
inspected to obtain an indication of whether the image was sent or received.
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4.2. Other analysis techniques

Volatility currently does not have any 
plugins to extract user data from 
Android applications. Each application 
stores data differently in memory and 
due to the vast number of Android 
applications, many of which are 
regularly updated, it would be 
impractical to write and maintain plugins 
that extract application data. However, 
relevant application data can still be 
obtained by using general string 
analysis and linear file carving 
techniques.

Even though it is possible to extract 
artefacts directly from a physical 
memory image, it is in most cases 
recommended to search and extract 
data from the process memory instead. 
The main reason for this is that the 
virtual address space of a process is 
continuous, unlike the data in a physical 
memory image. More specifically, data 
that crosses page boundaries in the 
virtual address space may be split 
across multiple locations in physical 
memory. As a result, signatures might 
fail to match these patterns in physical 
memory. This is especially relevant to 
keep into account when carving files 
from memory that are larger than the 
page size, which is typically 4 kB.

Another advantage of analysing 
process memory is that you know which 
process the matched patterns belong 
to. This context is important to 
determine the meaning and relevance 
of data in memory and would be missed 
when directly analysing the physical 
memory image. Another advantage of 
analysing process memory is that data 
from irrelevant processes is filtered out, 
which potentially results in less 
irrelevant hits.

Analysing physical memory can still be 
useful in certain cases, for instance 
when looking for data related to 
terminated processes. The virtual 
address space of terminated processes 
cannot be reconstructed, but remnant 
data in freed pages that have not yet 
been overwritten can still be recovered 
from physical memory.

4.2.1. Pattern matching

This section demonstrates several 
examples of application and system 
data that could be extracted from a 
Nexus 5 device via pattern matching, 
in order to demonstrate the general 
methodology and techniques that can 
be used. There are several possible 
approaches to matching patterns in 
memory. One approach is to use 
Volatility’s linux_yarascan plugin to 
find signatures that match any textual or 
binary patterns in the process memory 
of one or more processes. Relevant 
data to look for may include text 
messages, browser history, call logs, 
passwords etc. The following example 
shows how the linux_yarascan plugin 
is used to find HTTP Host headers in 
the memory of the Opera browser 
application. This can reveal browser 
history even after the history was 
deleted from the flash memory.
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In this example, only the process memory of the browser was searched by 
passing its PID with the -p option. Omitting this option will cause the plugin to 
search all processes but will take considerably longer. However, this could be a 
good way to determine in which process(es) a certain pattern resided. By default, 
the linux_yarascan plugin only searches the userland memory, but the kernel 
memory can be included by passing the -K option. In this example, the YARA rule 
was passed as a string with the -Y option, but it is also possible to pass a YARA 
rule file with the -y option instead.

The same results can be obtained by extracting the process memory to disk with 
the linux_dump_map plugin and searching the extracted memory regions with 
utilities such as yara, strings and grep. The linux_dump_map plugin works by 
identifying the starting and ending addresses of process’ memory ranges and 
dumping each page within those ranges to disk. The addresses obtained by 
Volatility match the addresses that would be obtained on a live system by reading 
from /proc/<pid>/maps. Passing the PID with the -p option to the 
linux_dump_map plugin will cause all mappings of the specified process to be 
dumped. The linux_dump_map plugin also requires an output directory to be 
passed with the -D parameter.

$ vol.py linux_dump_map -p 10471 -D linux_dump_map_output/

Note that the linux_dump_map plugin extracts all pages that are accessible to 
the process, including pages that the process can access in kernel memory. 
The strings utility can be used to extract all strings from the memory regions to 
a new text file. To also extract Unicode strings, the strings utility should be run a 
second time with the option -el.

$ strings -a linux_dump_map_output/*.vma > opera_browser.txt
$ strings -a -el linux_dump_map_output/*.vma >> opera_browser.txt

The resulting text file can then be searched with the grep utility. This technique 
enabled to find back the same HTTP Host headers that were found previously with 
the linux_yarascan plugin.

This approach can also be used to extract text messages from memory. The 
following example shows text message content and metadata that was extracted 
from the Kik Messenger process.
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This data reveals the message content, recipient, timestamp and more. Each 
message was stored in a structured format: encapsulated by a message tag. By 
searching for all strings containing the text “<message ”, all memory-resident 
messages could be extracted from memory.

The extraction of text messages from memory could potentially reveal messages 
that were deleted from the flash memory, or that were stored only in an encrypted 
format on the flash memory. Some instant messaging applications such as 
WhatsApp may be configured to require additional fingerprint authentication. 
Inspecting the memory of the process could still reveal messages that might 
otherwise not be accessed on the live Android device.

Inspection of the memory image also revealed data structures that contained 
wireless access points information such as SSID and security key (PSK). This 
data resided in the wpa_supplicant process. Note that the Android device 
rebooted after it connected to the access point for the first time, so the PSK was 
automatically loaded into memory again after rebooting the device.

In some cases, it might be difficult for the analyst to know which signature to use 
to match relevant patterns in memory. For instance, searching for the PIN of a 
SIM card that was unlocked on the Android device is not feasible by simply 
matching all strings consisting of 4 digits, because there would be too many 
irrelevant hits. One possible approach is to introduce the same kind of artefact on 
a test device. For instance, when interested in how to obtain the PIN of a SIM 
card from memory, you can insert a SIM card with a known PIN in a test device,

unlock the SIM card with the PIN, take a memory image of the test device and then 
search for the known PIN in memory. This might reveal data in the near proximity of 
the PIN that can be used to create a signature that matches the PIN data on other 
devices as well. In the following example, looking for the known PIN “3961” revealed 
nearby data in the memory of the test device such as “supplyPin()”, “simSlot” and 
“pin:”, which could be used to create a signature.

Some digital forensics suites may be able to extract valuable system and user 
application artefacts from memory by using their built-in signatures, even if the suites 
are not designed to analyse memory images. The reason for this is that many 
forensic suites are designed to recover data from hard drives by using file carving 
and pattern matching techniques, in order to recover files and artefacts from 
unallocated space or from hard drives with a corrupt filesystem. Some suites can 
extract files and artefacts from memory images in the same way. For instance, the 
commercial forensic tool called Magnet Axiom could be used to extract valuable 
artefacts from a memory image of the Nexus 5 device. 
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The analysis of Android memory was not supported by the tool. However, by 
changing the file extension of the memory image to “.dd”, the tool was tricked into 
processing the memory image as a raw disk image. Of course, no file system 
was present in the image, but the tool analysed the data in the same way as it 
would analyse unallocated disk space, and was able to extract SMS messages, 
WhatsApp messages, Google search queries, Facebook activity and more. The 
following screenshot shows messages that were extracted by Magnet Axiom from 
the default Android Messages app (left) and from WhatsApp (right). Note that 
these are screenshots of the Magnet Axiom tool, which visualized the chat 
messages in a format that represents a messaging application interface.
These are not actual screenshots of the Android device.
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4.2.2. File carving

File carving techniques can be used to 
extract files from memory images that 
are not stored on the flash memory of 
Android devices. In the following 
example, the term “fox” was searched 
on Google Images within the Firefox 
browser on the Nexus 5 device. The 
device’s memory was then acquired 
and the linux_dump_map plugin was 
used to extract Firefox’ process 
memory. The extracted memory was 
then carved by Foremost, which is a file 
carving tool that can be installed via 
Aptitude.

$ cat linux_dump_map/*.vma | 
foremost -t png,jpg

Foremost was able to extract all 
thumbnail images that were loaded on 
the Google Images results page. 
Additionally, Foremost extracted 
screenshots of the browser from 
memory. These screenshots are 
automatically taken by Firefox and 
displayed in the overview of opened 
tabs. The following screenshot shows
a couple of the extracted images.
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This article has discussed and demonstrated the complete 
capture of volatile memory from Android devices and covered 
several analysis techniques to extract system and user data 
from the memory image. By using the techniques 
demonstrated in this article, we’ve shown it is possible to 
extract artefacts that cannot be extracted from the internal 
flash storage of the Android device, either because the 
artefacts are never stored on the flash storage in the first 
place, or because they are encrypted before being stored. 
Some of these artefacts, including passwords and text 
messages, could be of high value during forensic 
investigations.

At this moment, there are several technical limitations that could hinder the memory 
acquisition in a real-case forensic investigation. The first major limitation is the need to 
have root privileges on the Android device in order to acquire its memory as 
demonstrated in this article. It is likely that the investigated device in a real-case 
scenario is not rooted yet. Even though it is in most cases possible to root the Android 
device, the device will most likely need to be rebooted in the process, which would 
wipe the original contents of memory. The second major limitation is the need for the 
Android device to enable loadable module support. The default kernel of some Android 
devices does not enable module loading, in which case it is not possible to acquire the 
memory with a kernel module as demonstrated in this article. It is possible to replace 
the kernel of the Android device with a modified version which does enable module 
loading, but this requires the device to be rebooted, which wipes the original contents 
of memory. Therefore, future work would be useful to develop a more feasible method 
to acquire memory from the Android device without having to reboot the device, for 
instance by extracting memory via JTAG without removing the battery of the device in 
the process.

5. Conclusion

30  |  PwC



Ligh, M. H., Case, A., Levy, J., 
& Walters, A. The art of memory 
forensics: detecting malware and threats 
in windows, linux, and Mac memory. 
New York: Wiley; 2014.

Sylve J, et al., Acquisition and analysis 
of volatile memory from android devices, 
Digital Investigation (2012), 
doi:10.1016/j.diin.2011.10.003

References

31  |  PwC

Dominique Pauwels
dominique.pauwels@pwc.com

Author



Thank you

© 2021 PwC. All rights reserved. PwC refers to the PwC network and/or one or more of its member firms, 
each of which is a separate legal entity. Please see www.pwc.com/structure for further details.


